Leetcode 1229 Solution
This article provides solution to leetcode question 1229 (shortest-path-with-alternating-colors).
Access this page by simply typing in "lcs 1229" in your browser address bar if you have bunnylol configured.
Leetcode Question Link
https://leetcode.com/problems/shortest-path-with-alternating-colors
Solution
class Solution:
def shortestAlternatingPaths(self, n: int, red_edges: List[List[int]], blue_edges: List[List[int]]) -> List[int]:
graph = collections.defaultdict(list)
for src, dst in red_edges:
graph[(src, 'r')].append((dst, 'b'))
for src, dst in blue_edges:
graph[(src, 'b')].append((dst, 'r'))
q = collections.deque()
visited = set()
red_min_steps = [sys.maxsize] * n
blue_min_steps = [sys.maxsize] * n
step = 0
q.append((0, 'r'))
visited.add((0, 'r'))
red_min_steps[0] = 0
q.append((0, 'b'))
visited.add((0, 'b'))
blue_min_steps[0] = 0
while q:
s = len(q)
for _ in range(s):
node_id, node_color = q.popleft()
for neigh_node_id, neigh_node_color in graph[(node_id, node_color)]:
if (neigh_node_id, neigh_node_color) in visited:
continue
if neigh_node_color == 'r':
red_min_steps[neigh_node_id] = min(red_min_steps[neigh_node_id], step + 1)
else:
blue_min_steps[neigh_node_id] = min(blue_min_steps[neigh_node_id], step + 1)
q.append((neigh_node_id, neigh_node_color))
visited.add((neigh_node_id, neigh_node_color))
step += 1
ans = []
for red_opt, blue_opt in zip(red_min_steps, blue_min_steps):
opt = min(red_opt, blue_opt)
if opt == sys.maxsize:
ans.append(-1)
else:
ans.append(opt)
return ans